CECS 211

Principles of Computer Engineering I

Midterm – 3/15 Tuesday



Lecture Videos and Other Resources



Most of the engineering tools we use in Computer Engineering are designed to run on Windows. If you have a Mac, the easiest way to run these windows applications is with Windows on a Virtual Machine. Here is a link to an article on how to do this for free. There are other methods and different Virtual Machine platforms but this is just one example. In this instance, google searching can produce alternative methods. Note that I do not own a mac and I have not tested this or any other methods. Windows On Mac For Free

Review / Supplemental Materials

These are recommended problems and example midterms with solutions provided to prepare for the exams. This will not be collected or graded, but many of these questions will be used for the Midterms and Final. It is necessary to get practice with these problems and it is strongly encouraged to start as soon as possible in order to have plenty of time to get help, please ask questions and prepare.

Midterm Prep

Topics: Basic Atomic Theory, Valence Electrons, Voltage, Current, Conventional vs Electron Flow, Resistance, Series Circuits, Parallel Circuits, Series-Parallel Combination Circuits, Resistance in Series & Parallel, Equivalent Resistance, Kirchhoff’s Voltage and Current Law, Superposition

pg100 Self-Test: 1-4, 6, 8-13,15,18;

pg102 Problems 3-12, 3-17, 3-18, 3-23, 3-33, 3-36 (Please Draw one schematic for each set)

pg132 Self-Test: 1-9,12-17; Problems (Don’t use Multisim if asked for, solve by hand): 4-2, 4-6, 4-11 , 4-16, 4-17, 4-18, 4-29 (answer c in conventional flow), 4-30 (answer c in conventional flow), 4-34, 4-39

Pg194 Questions 1 to 12 pg196 6-1 to 6-32 skip 6-26, 6-27 (Don’t use Multisim if asked for, solve by hand)

Topics: Maximum Power Theorem, Superposition, Mesh/Nodal Analysis, Thevenin/Norton Equivalent Circuits, Delta-Wye Conversions

Nodal Analysis / Mesh Analysis – Pg275-279 – The book talks about Nodal and Mesh Analysis but the class examples and the old midterm 2 problems are more thorough examples of what you would find on the exam.  


Final Exam Prep – Cumulative

Emphasis on Mesh/Nodal Analysis, Delta-Wye, Thevenin, Norton

AC Topics: Pk/Pk-Pk/RMS, Transformers – Step-Up/Down

Inductance in Series/Parallel, Energy Stored, L/R Time Constant, LR Series Circuits – Expanding/Collapsing Magnetic Field, Current & Voltage, Back-EMF

Diodes: LEDs, Current Limiting Resistors, Capacitance in Series/Parallel

2 Practice Problems: Inductors in DC

Previous Semester Final Review Day –PrevSemReviewDayBoard.pdf


Lab Equipment Borrow and Alternatives for Remote Labs


If purchasing yourself, here is the link: Studica – myDAQ

Alternatives include the Analog Discovery I or II or building up your own electronics workbench including Benchtop PSU, Oscilloscope and Function Generator. See my 100$ Electronics Workbench Challenge for more info. I would suggest this route only if you have a very strong passion for and wish to pursue a deeper understanding of test equipment. This route is much more difficult also involves more autodidactic learning and more struggle.

Lab 1 – Introduction to LTSpice and Ohm’s Law

Due: 2/1 – Start of Lecture – Dropbox

Lab 2 – Series Circuits and Voltage Dividers

Due: 2/8 – Beginning of Lecture

Lab 3 – Series and Parallel

Due: 2/15 – Beginning of Lecture

The Text on #3 is a little blurry:
R6=3.6, R3=7.5, R5=8.2 (top to bottom)
R1=2.4, R2=5.6, R4=3.0 (left to Right)

Lab 4 – Series and Parallel Prototyping

Due: 3/1 – Beginning of Lecture

need supplies by 2/22


Supplies Required: Breadboard, DMM, Resistors, Wire, (myDaq if lab is not in-person) needed on x/x

Lab 5 – Thevenin and Norton Equivalent Circuits

Due: 3/10 – Beginning of Lecture

Lab 6 – Mesh Analysis

Due: x/x – Beginning of Lecture


Online: For Lab 6 we have a few limitations. We will skip the breadboarding as the myDaq is not capable of providing the 2 separate voltages we need. We will also skip the soldering portion of this lab for safety and supply reasons. Normally during an in-class session I would be providing soldering irons and prototype board to construct the prototype. This is not possible to do remotely so I’ll ask everyone to skip this.

Deliverables for the Online version. Solve the circuit by hand using mesh analysis and solve for Voltage and Current of each component (the 3 resistors). Create an LTSpice model of the circuit and find Voltage and Current for each component. Create a table comparing your solution to the results from LTSpice.


Hand Calculated Solution using Mesh Analysis

LTSpice Transient Analysis Screenshot with Schematic and Waveform displaying 6 measurements, Vr1,Vr2,Vr3,Ir1,Ir2,Ir3

Table Comparing Hand Calculated Results to the LTSpice Measured Results. 2 Columns, 3 Rows

You may disregard all other aspects from the lab document…

Materials: Breadboard, DMM, Resistors, Wire

Materials Supplied: Proto-board, Soldering Iron, Solder

Lab 7 – Introduction to LTSpice and Inductors

Due: x/x – Beginning of Lecture



You may skip the part of the lab document asking you to draw the backemf.

Lab 8 – Introduction to LTSpice and Capacitors

Due: x/x – Beginning of Lecture



Lab 9 – Diodes in DC – LED – Light Emitting Diodes – SKIPPED

Lab 10 – Diodes in AC

Due: x/x – Beginning of Lecture


Lab X – Inductors – RL Circuit

TTh – Due Date 



Throughout the semester you will need a few lab supplies. Here is a tentative list and some sources or recommendations.

Most supplies can be purchased from the EAT – Embedded Applications Technology Club located in VEC-524. Just walk in (They are usually available throughout the day) and ask for the EAT club. All of their supplies are competitively priced with no waiting/shipping times and the club is a great resource to join and get ahead in your career.

Digital Multimeter – Not carried by EAT, have a look at my dedicated multimeter page for some discussion and recommendations.

Basic Electronics Part Kit from Amazon https://www.amazon.com/gp/product/B07Z1BK7NG

Resistor Pack – Resistor Assortment of 1/4 or 1/8 watt with various values. EAT has gone through the trouble of assembling all of the necessary values that would be useful for the rest of your academic career. Keep in mind that this is a starting point, you will definately grow your collection as you learn. You can get this from EAT, amazon, or ebay. As for the different values you will need, all I can say is many different values. If you have a look at the class supplies page, you will see a link for a variety pack of 56 different values. Something like that will serve you well for the remainder of your classes in this department.

Breadboard – You will need a way to prototype your circuits. A breadboard will allow you to do this. For a picture of what a breadboard is, you can check out this link Breadboard. There are a few different standard sizes, any of them will work. EAT has these as well. A good recommendation for a size is 830 connection points, approximately 2.2″ x 7″ but a smaller one will work just as well.

Wire and Wire Strippers or Jumper Wires – There are two ways to connect circuits on a breadboard. You can buy already made jumper wires, like: or  or you can buy a roll of wire and use wirestrippers to cut your own length  and 

Check out the supplies page more more discussion on wire strippers. The recommended wire size for breadboards is 22 awg solid core wire and similarly the wire strippers should match the wire size, 20-30 awg is the right range for us. I prefer the greenlee P20. EAT also carriers wire for making connections.

Toward the end of the CECS 211 semester and continuing through CECS 311 and well into CECS 262, 346, 347, 447 and into the Senior Design 490A/B classes there are other supplies you will want eventually.

Capacitor Pack – Assorted Electrolytics and Ceramics

Oscilloscope Probes x2 – for the Oscilloscopes in lab

BNC to Alligator Clip Cable – for Function Generators

311 Parts Kit – various components we will use in 311