CECS 211 - HW 1 - Solutions

For each problem, please show your entire work and submit via canvas. These problems are taken from chapters two and three from J. Nilsson and S. Riedel, Electric Circuits, 10^{th} .

1.

P 2.11 [a] Using the passive sign convention and Ohm's law,

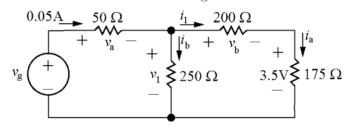
$$v = Ri = (3000)(0.015) = 45 \text{ V}$$

[b]
$$P_{\rm R} = \frac{v^2}{R} = \frac{45^2}{3000} = 0.675 = 675 \text{ mW}$$

[c] Using the passive sign convention with the current direction reversed,

$$v = -Ri = -(3000)(0.015) = -45 \text{ V}$$

$$P_{\rm R} = \frac{v^2}{R} = \frac{-45^2}{3000} = 0.675 = 675 \text{ mW}$$

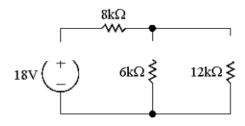

2.

Switch

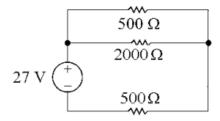
3.

P 2.20 Label the unknown resistor voltages and currents:

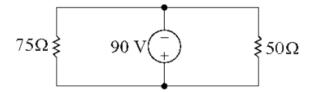
[a]
$$i_a = \frac{3.5}{175} = 0.02 \,\text{A}$$
 (Ohm's law)
 $i_1 = i_a = 0.02 \,\text{A}$ (KCL)

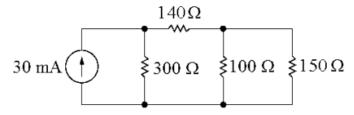

[b]
$$v_b = 200i_1 = 200(0.02) = 4 \text{ V}$$
 (Ohm's law)
 $-v_1 + v_b + 3.5 = 0$ so $v_1 = 3.5 + v_b = 3.5 + 4 = 7.5 \text{ V}$ (KVL)

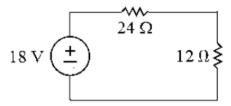
[c]
$$v_a = 0.05(50) = 2.5 \,\text{V}$$
 (Ohm's law)
$$-v_g + v_a + v_1 = 0 \quad \text{so} \quad v_g = v_a + v_1 = 2.5 + 7.5 = 10 \,\text{V} \quad (\text{KVL})$$


[d]
$$p_{\rm g} = v_{\rm g}(0.05) = 10(0.05) = 0.5 \,\rm W$$

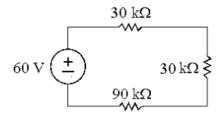
4.

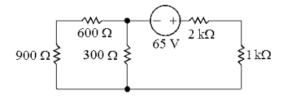

P 3.3 [a] The 5 k Ω and 7 k Ω resistors are in series. The simplified circuit is shown below:


[b] The $800\,\Omega$ and $1200\,\Omega$ resistors are in series, as are the $300\,\Omega$ and $200\,\Omega$ resistors. The simplified circuit is shown below:


[c] The $35\,\Omega$, $15\,\Omega$, and $25\,\Omega$ resistors are in series. as are the $10\,\Omega$ and $40\,\Omega$ resistors. The simplified circuit is shown below:

[d] The $50\,\Omega$ and $90\,\Omega$ resistors are in series, as are the $80\,\Omega$ and $70\,\Omega$ resistors. The simplified circuit is shown below:


P 3.4 [a] The 36 Ω and 18 Ω resistors are in parallel. The simplified circuit is shown below:


[b] The $200\,\Omega$ and $120\,\Omega$ resistors are in parallel, as are the $210\,\Omega$ and $280\,\Omega$ resistors. The simplified circuit is shown below:

[c] The 100 k Ω , 150 k Ω , and 60 k Ω resistors are in parallel, as are the 75 k Ω and 50 k Ω resistors. The simplified circuit is shown below:

[d] The $750\,\Omega$ and $500\,\Omega$ resistors are in parallel, as are the 1.5 k Ω and 3 k Ω resistors. The simplified circuit is shown below:

- P 3.5 Always work from the side of the circuit furthest from the source. Remember that the current in all series-connected circuits is the same, and that the voltage drop across all parallel-connected resistors is the same.
 - [a] Circuit in Fig. P3.3(a):

$$R_{\text{eq}} = [(7000 + 5000)||6000] + 8000 = 12,000||6000 + 8000$$

= $4000 + 8000 = 12 \text{ k}\Omega$

Circuit in Fig. P3.3(b):

$$R_{\text{eq}} = [500 || (800 + 1200)] + 300 + 200 = (500 || 2000) + 300 + 200$$

= $400 + 300 + 200 = 900 \Omega$

Circuit in Fig. P3.3(c):

$$R_{\text{eq}} = (35 + 15 + 25) \| (10 + 40) = 75 \| 50 = 30 \Omega$$

Circuit in Fig. P3.3(d):

$$R_{\text{eq}} = ([(70 + 80)||100] + 50 + 90)||300 = [(150||100) + 50 + 90]||300$$

= $(60 + 50 + 90)||300 = 200||300 = 120 \Omega$

[b] Note that in every case, the power delivered by the source must equal the power absorbed by the equivalent resistance in the circuit. For the circuit in Fig. P3.3(a):

$$P = \frac{V_s^2}{R_{eq}} = \frac{18^2}{12,000} = 0.027 = 27 \text{ mW}$$

For the circuit in Fig. P3.3(b):

$$P = \frac{V_s^2}{R_{\text{eq}}} = \frac{27^2}{900} = 0.81 = 810 \text{ mW}$$

For the circuit in Fig. P3.3(c):

$$P = \frac{V_s^2}{R_{\text{eq}}} = \frac{90^2}{30} = 270 \text{ W}$$

For the circuit in Fig. P3.3(d):

$$P = I_s^2(R_{eq}) = (0.03)^2(120) = 0.108 = 108 \text{ mW}$$